« Back

Canis lupus

Alt. Name: gray wolf
Location: Department of Mammalogy Natural History Museum of Los Angeles County
Specimen ID: LACM 23010

This is a cranium model of Canis lupus, the gray wolf, built from a medical CT scan dataset. The model was used in biomechanical simulations using finite element analysis (FEA). Specimen loan courtesy of Jim Dines (NHMLA). CT scan courtesy of Michael McNitt-Gray (UCLA).
Related Publication
Year: 2015
Authors: Tseng, Z. J., Flynn, J. J.
Journal: PLoS ONE 10(4): e0124020. doi:10.1371/journal.pone.012402
Performance of the masticatory system directly influences feeding and survival, so adaptive hypotheses often are proposed to explain craniodental evolution via functional morphology changes. However, the prevalence of “many-to-one” association of cranial forms and functions in vertebrates suggests a complex interplay of ecological and evolutionary histories, resulting in redundant morphology-diet linkages. Here we examine the link between cranial biomechanical properties for taxa with different dietary preferences in crown clade Carnivora, the most diverse clade of carnivorous mammals. We test whether hypercarnivores and generalists can be distinguished based on cranial mechanical simulation models, and how such diet-biomechanics linkages relate to morphology. Comparative finite element and geometric morphometrics analyses document that predicted bite force is positively allometric relative to skull strain energy; this is achieved in part by increased stiffness in larger skull models and shape changes that resist deformation and displacement. Size-standardized strain energy levels do not reflect feeding preferences; instead, caniform models have higher strain energy than feliform models. This caniform-feliform split is reinforced by a sensitivity analysis using published models for six additional taxa. Nevertheless, combined bite force-strain energy curves distinguish hypercarnivorous versus generalist feeders. These findings indicate that the link between cranial biomechanical properties and carnivoran feeding preference can be clearly defined and characterized, despite phylogenetic and allometric effects. Application of this diet-biomechanics linkage model to an analysis of an extinct stem carnivoramorphan and an outgroup creodont species provides biomechanical evidence for the evolution of taxa into distinct hypercarnivorous and generalist feeding styles prior to the appearance of crown carnivoran clades with similar feeding preferences.
Secondary Publications
Year: 2013
Authors: Tseng, Z.J.
Journal: PLOS ONE 8(5): e65305
Year: 2009
Authors: Tseng, Z.J.
Journal: Biological Journal of the Linnean Society 96(1):51-67
  • Canis_lupus_lateral
3d / Web GL Preview Unavailable [?]